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Abstract 

Three existing multislice formulations (MS) that are 
claimed to be applicable for large beam tilt are 
introduced in a unified form and the validity of these 
formulations for large beam tilt is evaluated. It is shown 
that one formula, which is called MSSBT (the MS for 
small beam tilt), is valid only for tilt angles less than 6 ° , 
but the second one, which is called MSLBT (the MS for 
large beam tilt), can be used for tilt angles as large as 
20 °, while the third one yields results very close to the 
MSLBT results for tilt angles up to 12 °. Simulations 
also show that the accuracy of the MSLBT is 
independent of the scattering power of the atoms. The 
reasons for the inaccuracy of these multislice formula- 
tions for beam tilt (MSBT) and the differences between 
the three MSBT formulations are discussed based on the 
complete Schr6dinger equation, which includes back- 
scattering effects. For calculating the higher-order 
Laue-zone (HOLZ) effects from triclinic and mono- 
clinic crystals, it is pointed out that the slices have to be 
cut parallel to the ab plane of the crystal and MSBT 
formulations should be used. The computational 
formulations for potentials of the crystal slices and the 
propagator are derived based on the transformations 
between the crystallographic coordinate system and the 
working coordinate system. Calculations of the HOLZ 
reflections for the monoclinic crystal Na2Ti307 [001] 
are carried out. It is shown that for triclinic and 
monoclinic (when the beam direction is along the c axis) 
crystals HOLZ effects dynamically influence not only 
the intensity but also the symmetry of zero-order Laue- 
zone (ZOLZ) diffraction patterns. Hence, in that case, 
the projection approximation for simulating the 
HRTEM images may not be used. 

1. Introduction 

For quantitative electron microscopy, accurate dynami- 
cal calculations of multiple electron scattering in the 
specimen are essential since the analysis of experi- 
mental data depends entirely on theoretical simulations. 
Up to now, there have been many dynamical theories or 
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methods for calculating high-energy electron diffraction 
(HEED) and imaging and each of them has its own 
advantages for a particular purpose (Wang, 1995). The 
multislice theory or method (MS), originally proposed 
by Cowley & Moodie (1957), is particularly suitable for 
the dynamical calculation when a large number of 
reflection beams has to be included. The MS can include 
not only zero-order Laue-zone (ZOLZ) but also higher- 
order Laue-zone (HOLZ) reflections as well, accurately 
up to the modified Schr6dinger equation for HEED 
(Goodman & Moodie, 1974; Chen, Op de Beeck & Van 
Dyck, 1996). Because of its computational capability, 
the MS is believed to be the most efficient procedure for 
many cases of HEED and imaging (Spence & Zuo, 
1992; Wang, 1995). 

However, it is still a problem for the MS to 
calculate HOLZ effects from triclinic or monoclinic 
(when the incident electron beam is along the c axis) 
crystals. The difficulty for the MS in such a case is 
that, when the slices are cut perpendicular to the beam 
direction, both the size of each slice and the total 
number of slices needed for the calculation become 
infinite and therefore calculations of the phase gratings 
are impossible. The only way to avoid this slicing 
difficulty, as will be shown, is that the slices have to be 
taken parallel to the ab plane of the crystal lattice but 
the multislice method for beam tilt (MSBT) should 
allow for a large beam tilt. However, this immediately 
gives rise to another important problem: for what 
magnitudes of tilt angle are the existing MSBT 
formulations valid or accurate? 

Currently, there are several different MSBT formu- 
lations (e.g. Cowley, 1981; Van Dyck, 1980; Ishizuka, 
1982; Wang, 1995). These formulations are identical 
for normal illumination but different for inclined 
illuminations. This implies that the validity of MSBT 
formulations is limited by the tilt angle. Although we 
know that the MS without beam tilt can be as accurate as 
the modified Schr6dinger equation for HEED, which 
neglects back-scattering effects, and we also know that 
if the tilt angle is not too large, perhaps a few degrees, 
the MSBT should work as well as the MS without tilt 
(Cowley, 1981), the validity of the MSBT formulations 
has so far never systematically been tested for different 
tilt angles. Hence, in order to use the existing MSBT 
formulations correctly, it is important to test up to what 
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tilt angle they can work with the same accuracy as the 
MS without tilt. 

In the present work, three existing MSBT formula- 
tions are first introduced in a unified form. Secondly, 
using a special monoclinic structure, the validity of the 
three MSBT formulations is numerically checked for a 
series of tilt angles by the MS without tilt. Finally, the 
HOLZ reflections from some monoclinic structures are 
calculated with one of the tested MSBT formulations• 

It should be stressed that only in this particular work 
is the multislice method divided into the multislice 
formula without beam tilt (MS) and the multislice 
formulations for beam tilt (MSBT). 

2. Formulations and theoretical schemes 

2.1. Multislice formulations for  beam tilt (MSBT) 

In this section, three existing MSBT formulations are 
introduced in a unified form so as to clearly determine 
the differences between these formulations• First, we 
will present two MSBT formulations by following our 
previous approaches (Van Dyck, 1980; Chen, Van 
Dyck, Op de Beeck, Broeckx & Van Landuyt, 1995), 
then in the unified form we rewrite the third formula, 
which is derived by Wang, who followed Ishizuka's 
(1982) method based on the so-called first-principles 
approach (Wang, 1995). 

2.1.1. Two MSBT formulations. We now consider 
the transmission of high-energy electrons in a solid 
under the inclined illumination as shown Fig. 1. The 
electron wave function tP(r) obeys the time-independent 
Schr6dinger equation: 

--[(h2/87r2m)Ar + eU(r)]~(r) - (h2k2/2m)tP(r). (1) 

The symbols in (1) have their usual meanings (see e.g. 
Spence & Zuo, 1992)• By rewriting the wave function 
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Fig. 1. Illustration of  an inclined electron plane wave with wave 
vector k incident on a crystal that is assumed to consist of  a series of  
very thin slices, where 0,, is the angle between the incident electron- 
beam direction and the normal direction of  the crystal surface, k z 
and K u , respectively, are the z component  and the xy component of  
the wave vector k. 

(without any loss of generality) as a modulated plane 
wave with 

q/(r) -- 9(r) exp(27rikzz ), (2) 

substituting (2) into (1) and neglecting the term 
02tp(r)/0z 2, which mainly represents the back-scattering 
effect (Bird, 1989), we can finally obtain a first-order 
differential equation for 9(r) with 

~zz = ~ , 4 +  i a U ( r ) + ~  qg(r), (3) 

where a is the interaction constant, k, K,, and k z are 
defined in Fig. 1 and ,4 is the Laplacian operator in the 
xy plane. 

Solving (3) in the multislice scheme, in which the 
solid film is considered as a series of thin slices with the 
same slice thickness (Fig. 1) and neglecting some 
constant factors (Chen, Van Dyck, Op de Beeck, 
Broeckx & Van Landuyt, 1995), we obtain the first 
MSBT formula: 

~ = exp{eu[(iAA/4rr) -- 2K u • V 
• p Ku - rri2K 2 + taV~ ]}~n_l 

~_ exp{e,[(i2A/4zr) -- 2K,, • V 
• 2 • p K u  - m2Ku]} exp(tcre~V~ ) ~ - 1 ,  (4) 

with the slice potential averaged along z (the slice plane 
normal): 

ng 

VP(R) = (1/E) f U(r)dz, (5) 
( n - l ) e  

where ~ u  (R) = 1, V is the gradient operator in the xy 
plane, e u = e/cos0., = (k/kz)e is the 'slice thickness' 
measured along the beam direction and 2 = 1/k is the 
incident electron wavelength. In (4), the propagator, in 
reciprocal space (by the Fourier transformation), takes 
the following form: 

P(K, K,) - P(K + Ku) = exp[-rrie,,A(K + K,,)2], (6) 

where P(K) indicates the normal Fresnel propagator in 
reciprocal space. 

However, the interesting thing is that, instead of (2), 
if we write the modulated plane wave as 
tP(r) = ~0(r)exp(2:rikz) and follow the same derivation 
procedure as for t.he first MSBT formula, another 
MSBT formula can be obtained (Chen, Van Dyck, Op 
de Beeck, Broeckx & Van Landuyt, 1995): 

~ = exp{e[(iAA/4rc) - 2K~- V 
• p Ku -- rci,~K2u + l(TVIn]}(1)n_ 1 

.~ exp{e[(i2A/4rO -- 2K,,. V 

- rri2K2,,]} exp(iae vp xa, K. , n , . ~ n _ l .  (7) 

The only difference between (4) and (7) is that the slice 
thickness in (7) is measured along the normal direction 
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of the slice plane and is independent of the beam tilt, 
while the 'slice thickness' in (4) depends on the beam 
tilt. It should be noted that in (4) and (7) the first-order 
Zassenhaus expansion (Goodman & Moodie, 1974; Van 
Dyck, 1979) is used to separate the propagator and the 
phase grating. 

2.1.2. The third formula presented in the unified 
form. Ishizuka's original MSBT formula (Ishizuka, 
1982) is difficult to rewrite in the form that we used to 
present the first two formulations. Moreover, the 
potential in his formula is projected along the inci- 
dent-beam direction and therefore would be very 
difficult to calculate when HOLZ effects have to be 
included. However, following Ishizuka's derivation, 
Wang (1995) presented a modified formula, for which 
the potential should be projected along the normal 
direction of the slice plane. Nevertheless, this formula 
can be rewritten in the unified form as follows (see 
Appendix A): 

triclinic and monoclinic (if the incident beam is along 
the c axis) structures (Fig. 2a), the MS immediately 
runs into the problem that, since they have to be cut 
perpendicular to the c axis (the incident-beam direc- 
tion), the slices not only have no periodicity in the xy 
plane, but also cannot repeat themselves in the z 
direction. In reciprocal space (Fig. 2b), the situation is 
that HOLZ spots are not located at the reciprocal-lattice 
points of the ZOLZ plane but somewhere between these 
points. So it is impossible to describe the phase gratings 
for operating the MS calculation. 

In order to obtain computable phase gratings, the 
only way is to make the slices parallel to the ab plane, 
since in this way the obtained slices not only have the 
periodicity of the ab lattice plane but also can repeat 
themselves by including a shift of 8R -- (c/a) cos fla + 
(c/b) cos c~b after passing each ab lattice plane (Fig. 
2a), where ot and fl are the angles of the triclinic lattice 
defined in Fig. 5(a). 

~ .  = exp{e[(i2A /4~r) -- 2Ku. V 

zri,2KZu]} . p Ku - exp(tae,, V~ )~,_ I. (8) 

We see that in the third formula the propagator is the 
same as that in (7) but the phase grating is that of (4). 

So, following different derivations, different MSBT 
formulations are obtained. The common feature of all 
these derivations is the use of the high-energy 
approximation (e.g. Van Dyck & Coene, 1984) or 
forward-scattering approximation (Ishizuka, 1982), i.e. 
the neglect of back scattering, but the back scattering in 
each derivation is defined in its own way and this leads 
to different MSBT formulations. (We will come to this 
point later in the discussions.) It is also noticed that in 
Ishizuka's and Wang's derivations the small-angle 
scattering approximation is stressed to abtain the 
simplified propagator. 

Equations (4), (7) and (8) are the three MSBT 
formulations that we are going to test numerically with 
the FFTMS algorithm (Ishizuka & Uyeda, 1977). It 
should be noted that without simulations it is difficult to 
judge which MSBT formula is more accurate than the 
others. 

2.2. Theoretical schemes 

In this section, the schemes will be presented to 
calculate the HOLZ effects from triclinic and mono- 
clinic structures and to test MSBT formulations. 

2.2.1. Scheme for the HOLZ calculation of non- 
orthogonal crystals. It is known that the MS (without 
beam tilt) can calculate HOLZ effects correctly up to 
the exact solution of the modified Schr6dinger equation 
for HEED if the slice thickness is taken sufficiently thin 
(Chen, Op de Beeck & Van Dyck, 1996). However, 
when considering the HOLZ reflection effects from 
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Fig. 2. Illustration of the scheme to calculate the HOLZ effects from a 
triclinic or monoclinic crystal, showing the slicing difficulty of the 
MS (without beam tilt) and the feasible way of using the MSBT for 
the calculation: (a) real space; (b) reciprocal space with the Ewald 
sphere, where (h, k) is the ZOLZ plane and (h', k') the working 
lattice plane. 
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However, to calculate the diffraction patterns with 
the phase gratings parallel to the ab plane, MSBT 
formulations should be used, that is, a beam tilt of 
Ig, I = (sin0,/2) has to be included in the propagator. 

It should be noticed that in making slices parallel to 
the ab plane we in fact create a working lattice plane in 
reciprocal space (Fig. 2b) that is defined by reciprocal- 
lattice vectors a*'(= 1 / a s i n y )  and b*'(-- 1 / b s i n y ) ,  so 
that all the calculated reflection spots are located at 
lattice points of the working plane. It is also interesting 
to notice that with respect to the working plane all the 
original ZOLZ reflections except the central beam 
become HOLZ reflections. This means that, in order to 
obtain accurate results with the MSBT, sufficiently thin 
slices have always to be taken (even when no real 
HOLZ reflections are involved, see §2.2.2) since for 
HOLZ effects the multislice approach is only a first- 
order approximation in slice thickness (Chen, Op de 
Beeck & Van Dyck, 1996). 

2.2.2. Scheme f o r  testing the MSBT.  In order to use 
the MSBT to calculate the HOLZ effects for triclinic 
and monoclinic crystals, first of all, we have to know up 
to what tilt angle the MSBT formulations are as accurate 
as the MS and which formula is the best for large beam 
tilt. 
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Fig. 3. Illustration of the imaginary monoclinic structure model for 

testing the MSBT: (a) the real space, where the fl angle between the 
a axis and the c axis is assumed changeable; (b) the reciprocal space 
with the Ewald sphere, where all the higher-order lattice planes 
(represented by empty circles) are removed. 

For this purpose, here we propose an imaginary 
monoclinic structure (Fig. 3a). The structural model 
can be built up from a real monoclinic crystal by 
averaging the potential along the z direction (the c axis), 
e.g. removing all the HOLZ lattice planes (Fig. 3b). 
For such a structure, since there is only a ZOLZ plane, 
diffraction case (a) in Fig. 4 is equivalent to the case in 
Fig. 4(b) - based on the exact solution of the modified 
Schr6dinger equation for HEED - and therefore the 
case in Fig. 4(c) yields the same results as the case in 
Fig. 4(d) where the structure with the projected lattice 
parameter of a 0 -- a sin f is orthogonal so that we can 
obtain accurate diffraction patterns with the MS 
procedure. On the other hand, for case (c), we can 
directly carry out the calculation with the MSBT and the 
obtained results can be compared with those calculated 
by the MS in case (d). Moreover, for such a structure 
model, the/~ angle between the a axis and the c axis can 
be assumed changeable. In this way, the validity of the 
MSBT can numerically be checked with the MS for a 
series of tilt angles. 

Again, it should be stressed that, although the 
potential along the z direction is constant, there is 
potential variation along the z' direction. Hence, the 
original ZOLZ reflections have to be treated as HOLZ 
effects when we use the MSBT for case (c) in Fig. 4, 
that is, the slices parallel to the ab plane have to be cut 
sufficiently thin. 

3. Computational formulations of the MSBT for 
triclinic crystals 

In order to calculate the phase gratings and the 
propagator of the MSBT from the lattice parameters 
and structural data of triclinic crystals, the following 
transformations between the two coordinate systems in 
Fig. 5 are necessary: 

(a) In real space, 

a ' = a ,  b ' = b ,  

c' = - [ ( c / a )  cos/~]a - [(c/b) cos ot]b + c 

and 

x' = x + [ (c /a )cos  fl]z, 

(b) In reciprocal space, 

and 

y' - y + [(c/b) cos ct]z, 
(9) 

Z' = Z .  

a*' = a* + [ (c /a )cos  fl]c*, 

b*' = b* + [(c/b) cosct]c*, c*' = c* 

h ' = h ,  k ' = k ,  

l' = - [(c/a) cos fl]h - [(c/b) cos a]k + l. 
(10) 
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3.1. Calculating the potential o f  the slices 

Since the crystal potential can be written as 

V(r ')  -- V(r)  = ~ U(hkl)exp[2zri(hx + ky + lz)] 
hkl 

= ~ U(hkl)exp(2n'i{hx' + ky' 
hkl 

+ [1 - h(c/a)cos ~ - k(c/a)cosa]z'}),  

(11) 

the average potential (along the normal  direction of  the 
slice plane) within slice n is 

nE 

VP(R ' )=(1 /e )  f V(r')d(z'c') 
(n-De 

= ~ U'(h,k)exp[2rri(hx' + ky')] (12) 
h.k 

with 

V'(h,k) 

= ~ U(hkl) 
sinl(rr/m)[l -- h(c/a)cos ~ - k(c/a)cosot]} 

l {(zr/m)[l -- h(c/a)cos ~ - k(c/a)cosa]} 

x exp{2zriz'n[l - h(c/a)cos fl - k(c/a)cosot]}, (13) 

where m = c ' / e  and z ' .=(1 /m) (n  - ! )  and the 2 
Fourier  t ransform of  the potential can be calculated 

by 

U(hkl) = (C/I2cen) ~--~fj(hkl)exp(--Bj/4d~hkt ) 
J 

× exp[-Zrci(hxj + kyj + lzj)] (14) 

with C and S2ce u, respectively, a constant and the 
volume of  the unit cell (Self, O 'Keefe ,  Buseck & 
Spargo,  1983). In (14), (xj, yj, zj) are the coordinates of  
atom j in the original triclinic unit cell and Bj and fj ,  
respectively, the D e b y e - W a l l e r  factor (DW) and the 
atomic scattering factor of  atom j.  dhk t is the interplanar 
spacing of  reflection planes (hkl). 

If  only l = 0 is included in the potential calculations, 
the potential variation along the c axis is neglected. This 
is just  the case for the monoclinic structural model that 
is used to test the MSBT. 

3.2. Propagator for  beam tilt 

In the MSBT calculation for triclinic crystals,  the 
propagator  in (6) has to be calculated with respect to the 
working plane in reciprocal space, that is 

K = h'a*' + k'b*' 

K,  = [(a/2)  cos fl sin 2 y]a*' + [(b/2) cos a sin 2 y]b*'. 

(15) 

l k 

a' a = sin fl 

]C I,[t l I 
i i V(R,Z ) = V(R) V(R,Z) = Vdi) 

(a) (b) 

= exp T(A + Nc V/T) ~ = exp T(A + Nc V/T) 

Nc 

a p 

I 
(c) (d) 

k 

'Z IN c 

Fig. 4. Demonstration of the equivalencies between diffraction cases (a) and (b) and (c) and (d), in which ff',(R, T) = exp{T[A + NcV(R)/T]} is 
the exact solution of equation (3), the modified Schr6dinger equation for HEED, with short-hand notations: A and V(R), the 2D Laplacian 
operator and the potential multiplied by, respectively, i2/4zr and ia. 
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Table 1. Structure data and Debye-Waller factors for the Na2Ti307 monoclinic crystal,, which are used for 
calculations (Andersson & Wadsley, 1961); the DW factors are assumed values 

Type of atom 

Number of atoms 
Atom positions: 

(xj, yj, zj) 
and 
(1 - x j ,  1 - y j ,  1 - z j )  

a = 0.8571 nm 
b = 0.3804 nm 
c = 0.9135 nm 
¢1 = 101.95 ° 

Na Ti 

2 x 2  2 x 3  
0.318, 0.75, 0.405 0.9722, 0.75, 0.7194 0.779. 
0.492, 0.75, 0.846 0.7533, 0.75, 0.3270 0.860 
and 0.858, 0.75, 0.0189 0.562. 
(1 - xj, 1 - yj, 1 - zj) and 0.686. 

(1 - xj, 1 - yj, 1 - zj) 0 . 0 0 6  
0.209 
0.095 
and 

DW factors 0.25 0.20 

O 

2 x 7  
0.75, 0.805 
0.75, 0.527 
0.75 0.355 
0.75, 0.115 
0.75, 0.255 
0.75 0.687 
0.75, 0.969 

(1 - x j ,  1 - y j ,  1 - z j )  
0.50 

4. Calculations 

In the present work, a program FFTMS written by J. H. 
Chen is used and calculations are carried out for the 
[001] zone-axis diffraction of the monoclinic crystal 
Na2Ti307 (Andersson & Wadsley, 1961). 

First, the accuracies of the MSBT for different tilt 
angles, from 3 to 30 °, are checked by changing the /~ 
angle of the monoclinic crystal Na2Ti307, from 93 to 
120 ° . Moreover, to see whether or not the accuracy of 
the MSBT is related to the scattering power of the 
atoms, MSBT calculations are also made for a 
hypothetical crystal, Cs2Ti307, which is obtained by 
simply replacing the lighter atom Na by a heavy atom 
Cs in the Na2Ti307 monoclinic structure. Secondly, the 
differences between the three MSBT formulations are 
numerically demonstrated by calculations. Finally, 
calculations of HOLZ effects are carried out for two 
Na2Ti307 monoclinic structures: one with the real /~ 
angle of 101.95 ° and another with an assumed/~ angle 
of 96 ° . 

The structural data for the monoclinic crystal 
Na2Ti307 are listed in Table 1. The Debye-Waller 
(DW) factors in Table 1 are assumed values since they 
are not available in the literature. It is noted that the use 
of the DW factors is very important for damping down 
the outer large-angle reflections, especially when the 
HOLZ effects are taken into account (Chen et al., 
1996). The accelerating voltage of 200 kV and 128 × 64 
sampling points (corresponding to the sampling inter- 
vals of 0.067 x 0.059 A, which are quite sufficient when 

C 

~ a  }' b a 

C~ .C t 

I b' 

~ 1 ~  a ' 

Fig. 5. Illustration of the crystallographic coordinate system for 
describing triclinic structures and the working coordinate system for 
performing the MSBT calculation. 

the DW factors are included) in the ab plane are kept 
fixed for all calculations. 

5. Calculation results 

The results from the numerical tests of the three MSBT 
formulations are given in Fig. 6 through Fig. 15 and 
those from the HOLZ calculations of monoclinic 
structures are demonstrated in Fig. 13 through Fig. 
15. The amplitude diffraction patterns (Fig. 13) are 
printed in such a way that a zero amplitude is set for all 
the reflections whose amplitudes are less than 
3.0 × 10 -3 and a fixed maximum value of 7.0 x 10 -2 

is set for those amplitudes that are larger than this 
maximum value. In the presented results, the symbols 
MSLBT, MSSBT and MSMBT, respectively, refer to 
(4), (7) and (8) (see definitions of these symbols in the 
Discussion). 

Figs. 6 and 7 show that the inaccuracy of the MSLBT 
increases slowly with increasing tilt angle. The MSLBT 
results are still acceptable for a tilt angle up to 18 °, but 
for tilt angles as large as 30 ° the errors of the MSLBT 
are severe. On the other hand, Fig. 8 shows that the 
accuracy of the MSLBT is independent of the scattering 
power of the atoms in the crystal, since the deviations of 
the MSLBT results from the standard MS results are not 
significantly changed by replacing Na by Cs in the 
Na2Ti307 structure. Fig. 9, however, shows that the 
amplitudes calculated by the MSLBT dramatically 
change with decreasing slice thickness until a suffi- 
ciently small slice thickness is employed. 

Comparisons of the results calculated by the three 
different MSBT formulations are given in Figs. 10, 11 
and 12. It is shown that for large tilt angles the MSLBT 
is much more accurate while for tilt angles less than 3 ° 
the three formulations show no differences. In addition, 
Figs. 10 and 11 show that MSSBT is still good enough 
for the tilt angle of 6 °, while Fig. 12 shows that the 
MSMBT results are very close to the MSLBT results up 
to tilt angles as large as 12 ° . 

Finally, the HOLZ reflections calculated by the 
MSLBT for the N a E T i 3 0  7 monoclinic structure with 
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the hypothetical f l  angle of 96 ° and that with the real/3 
angle of 101.95 ° are shown in Figs. 13 to 15. It should 
be noted that the calculated HOLZ diffraction patterns 
(Fig. 13) are presented in the working plane, not in the 
normal ZOLZ plane. It is shown in Fig. 15 that the 
intensity of ZOLZ reflection h00 differs from that of 
h00. This is an interesting result since it cannot be 
expected from the projection approximation. 

6. D i scuss ion  

6.1. MSBT formulations 

There are several existing MSBT formulations. 
Some of them are identical (e.g. Cowley, 1981; 
Chen, Wang, Luo, Ding & Cheng, 1995), some are 
really different. However, the differences between 
existing MSBT formulations are not always easy to 
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Fig. 6. Plots of the amplitudes of the 800 diffraction beam against crystal thickness, showing the accuracies of the MSBT for different tilt angles, 

where the symbol MSLBT x°(c/50) represents the result calculated by the MSLBT, equation (4), for the monoclinic structure with an x ° angle 
between the normal direction of the ab plane and the c axis and the slice thickness is c/50, while the symbol MSx°(c/50) indicates the standard 
result calculated by the multislice method (without beam tilt) for the same structure and the slice thickness used is c/50. 
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see because different authors use different approaches 
to the multislice theory. In this work, three existing 
formulations are introduced in a unified form so that 
the differences between them are summarized as 
differences in measuring the slice thickness, although, 
without simulations, it is still difficult to judge which 
formula is most accurate. It is clear, however, that 
the accuracy of each MSBT formulation is a function 
of the tilt angle and the smaller the tilt angle is the 
more accurate the MSBT formulation will be. When 
the tilt angle approaches zero, all the formulations 
converge to the MS formula (with zero tilt), which 
has been proven to yield the exact solution of the 
modified Schr6dinger equation for HEED when the 
slice thickness is very small (e.g. Goodman & 
Moodie, 1974). Thus, the MS is the most accurate 
multislice formula and can therefore serve as the 
standard for checking the validity of MSBT formula- 
tions. In order to do so, however, a special structure 
has to be used so that the same diffraction patterns 
can be calculated by both the MS and the MSBT 
formulations. 

We have seen from the calculation results that (4), 
the formula in which the slice thickness is measured 
along the incident-beam direction, is good enough at 
tilt angles up to 20 ° and (7), the formula in which the 
slice thickness is measured along the normal direction 
of the slice plane, is valid for tilt angles less than 6 °, 
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Fig. 7. The same as for Fig. 6 but for the 20,0,0 diffraction beam. 

while (8), the formula in which the slice thickness for 
the propagator is taken different from that for the 
phase grating, yields results very close to those of (4) 
up to 12 °. For small tilt angles (less than 3°), these 
three formulations yield exactly the same results. For 
convenience, (4), (7) and (8), respectively, will be 
called MSLBT (the MS for large beam tilt), MSSBT 
(the MS for small beam tilt) and MSMBT (the MS for 
medium beam tilt). 

So we see that, for normal simulations of HRTEM 
image and CBED patterns around a zone axis, the 
MSSBT is accurate enough since 6 or even 3 ° covers 
most experimentally used tilt angles. On the other 
hand, for a crystal it is always possible to define a 
new unit cell (a ' ,b ' ,c ' )  so that the incident-beam 
direction is close to the new a'b' normal. So in many 
cases it is not necessary to use the MSLBT. But if the 
surface effects are important, such as for bulk- 
forbidden surface-allowed diffraction (Marks, 1992), 
reflection high-energy electron diffraction (RHEED) 
where the illumination probe itself can be tilted away 
from the zone axis by more than 6 ° (see e.g. Wang, 
1995) and non-orthogonal crystal diffraction, the 
MSLBT and the MSMBT may be useful. 
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Fig. 8. Plots of the amplitudes of the 800 diffraction beam against 

crystal thickness showing that the accuracy of the MSBT is 
independent of the scattering power of the atoms. Meanings of the 
symbols are the same as in Fig. 6. (a) Na2Ti307, (b) Cs2Ti307. 
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Although the MSLBT can be used for large beam tilt, 
it should be stressed that in that case, for the potential 
calculation, one may no longer use the projection 
approximation that holds when the c parameter is small 
and the incident beam is exactly along the c axis. 
Actually, when the beam is tilted away from the c axis, 
the potential variation along the c axis becomes 'visible' 
and should be taken into account. Moreover, to include 
the potential variation properly, the slice thickness has 
to be cut sufficiently thin (Chen, Op de Beeck & Van 
Dyck, 1996). Nevertheless, it is interesting to notice 
that under the projection approximation (along the 
normal direction of the slice plane), the MSSBT and the 
MSLBT become identical except the total crystal 
thickness for the former (ne) is shorter than that of 
the latter [ne, = n(k/kz)e]: for V~ . . . . .  V~ = ~', the 
MSLBT [equation (4)] becomes 4,,K." =exp{(ne.)x 
[(iAA/azr)- 2K, .  V -  zriAK2u + icr~}4,0K. ", while the 
MSSBT [equation (7)] will become 4,,K"=exp{(ne)x 
[(i;tA/azr)- 2 K , - V - : r i X K  2 +itr~}t/,0 ~". However, if 
the potentials in each slice are different, slice operators 
will not be commutative and these two formulations will 
differ in an additional way. This is the case shown in 
Figs. 10 and 11 for which the MSBT calculations are 
made with different phase gratings so as to describe the 
potential variation along the z' direction. 

Theoretically, it is interesting to know why the 
MSBT is not as accurate as the MS (without beam tilt). 
The main reason for this, we believe, is that the normal 

high-energy approximation that yields both the MS and 
MSBT may not hold for large beam tilt, Actually, in the 
case of beam tilt, the back-scattering effects should be 
represented by 02~o(r)/Oz 2 instead of 02~(r)/OZ 2 (Fig. 
16a). Since ~o(x, y, z) = ~o(x u, y.,  z.), the relation 
between these two 'back-scattering' terms can easily 
be found: 

( ~2~ UxUy ~2~0 ~ > 
+ 2 \ ~ + --~,,~z,, uruz + UzUx 

(16) 

with 

ax,, @,, az. 
Ux=--~Z, Uy=--~Z, Uz---~Z. (17) 

So we can see that, neglecting ~o(r)/Oz ~ in the case of 
beam tilt, we in fact neglect not only a (large) part of the 
back scattering but also a (small) part of the forward 
scattering as well. 

This situation can clearly be illustrated in a 
reciprocal-space configuration (Fig. 16b): In the case 
of beam tilt, the back scattering covers all the wave 
vectors pointing towards the part A CB of the Ewald 
sphere while the forward scattering covers all those 
pointing towards the part AEB of the sphere. 
However, in the normal high-energy approximation, 
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Fig. 9. Plots of the amplitudes of the 800 diffraction beam against crystal thickness, calculated by the MSBT with different slice thicknesses. 
Meanings of the symbols are the same as in Fig. 6. 
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Fig. 11. The same as for Fig. 10 but for the 800 beam. 

what are included are all those pointing towards the 
part A'E'B' of the sphere, which covers the back- 
scattering wave  vectors  towards the part B'B but 
excludes the forward-scattering wave vectors towards 
the part A'A. This could be the reason why the 
M S S B T  is accurate for smal l  tilt angles  but inval id  for 
large tilt angles. The small-angle scattering approx- 
imation used by Wang to obtain the same propagator 
as that in the MSSBT seems to enhance this 
explanation, since only if the small-angle scattering 
assumpt ion  holds  and at the same t ime the tilt angle  is 
not too large will the neglect of 'back scattering' 
A'C'B' not cover a significant part of the correct 
forward-scattering AEB for the tilted beam. 

However, it is hard to clearly explain what leads to 
the difference between the MSLBT and the MSSBT. 
We have seen that in order to obtain the MSLBT we 
write ,/,(r)=~o(r)exp(2Jrikzz) and neglect a2~olaz 2, 
while we write q-,(r)= ~r)exp(27rikz) and neglect 
a2~o/az z to obtain the MSSBT. These two approxima- 
tions are obviously different. With respect to Fig. 
16(b), we can roughly say that a2~o/az 2 represents the 
complete 'back scattering' towards A'CB', which is 
determined by k, while a2~o/Sz 2 indicates those 
scattering towards A"C"B", which is determined by 
k z. So in fact the MSLBT does not completely lose all 
the 'back-scattering' effects towards A'C'B', and 
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therefore is more accurate for large tilts (since in that 
case k z is obviously less than k). For small tilts, 
however, k z tends to k and these two formulations 
become the same. On other hand, from Wang's  
derivation, which leads to the same phase grating as 
that in the MSLBT, we see that the 'back scattering' 
in the MSLBT seems to be corrected so as to be closer 
to the correct back scattering for the tilted beam. 

However, the 'back scattering' resulting in a MSBT 
formula will never be the correct one for a tilted beam 
as long as the slice is not taken perpendicular to the 
incident beam and the potentials are not projected 
along the beam direction. So, from this point of  view, 
maybe Ishizuka's original MSBT formula would be 
more accurate than others. But this remains to be 
tested. 

6.2. HOLZ calculations for  non-orthogonal crystals 

For calculating the HOLZ effects in triclinic and 
monoclinic (in case the incident beam is along the c 
axis of the monoclinic structure) crystals, the slices 
have to be chosen parallel to the ab plane of the 
crystals and the MSLBT should be used. However, if  
the 0 angle between the c axis and the normal 
direction of the ab plane is too large, e.g. for the 
angle of 30 °, the MSLBT can be inaccurate. To be 
reliable, we may conclude the following: (a) For the 
calculation of the large-angle resonant HOLZ effects, 
the MSLBT is accurate for the 0 angles around 10 ° or 
less. (b) When only the lower-order HOLZ effects due 
to the top-bottom atomic layers of the crystals are 
involved (Stobbs, Boothroyd & Stobbs, 1989; Marks, 

Fig. 13. Calculated diffraction patterns for Na2Ti307 monoclinic structures, where the ZOLZ patterns are obtained by neglecting the potential 
variation along the c axis while the HOLZ patterns are obtained by including the potential variation. Meanings of the symbols are the same as 
in Fig. 6. 
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1992), e.g. when the c parameter is quite small and 
therefore the large-angle resonant HOLZ effects are 
not important, the MSLBT can be used until the 0 
angle is as large as 20 ° . 

In the calculated HOLZ reflection patterns (Fig. 13), 
we can see that for monoclinic structures HOLZ 
reflections like 25,0,1 and 25,0,1 are not centrosym- 
metric. This can easily be understood from the Ewald- 
sphere configuration (Fig. 2b). But the interesting thing 
shown in _Figs. 13 and 14 is that ZOLZ reflections like 
h00 and h00 are also not centrosymmetric and this 
cannot be expected from the Ewald-sphere configura- 
tion (the kinematic approximation) as well as the 
dynamical calculations in which the projection approxi- 
mation (neglecting HOLZ effects) is used. 

For orthogonal structures, it is believed that the 
large-angle resonant HOLZ effects normally do not 
yield obvious effects in HRTEM images and therefore 
can be neglected in image simulations (Qin & Urban, 
1990; Chen et al. ,  1996). This conclusion may not be 
valid for the cases of triclinic and monoclinic crystals. 
We know that, in the case of orthogonal structures, the 
large-angle resonant HOLZ effects with very weak 
intensities only slightly influence the intensities of 
ZOLZ patterns but not the symmetry. In other words, 
if Friedel's law holds under the projection approxima- 
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Fig. 14. Plots of the amplitudes of some HOLZ and ZOLZ reflections, 
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Fig. 6. 

tion, it will still hold after including the large-angle 
resonant HOLZ effects. However, for triclinic and 
monoclinic crystals, Friedel's law will never hold if 
large-angle resonant HOLZ effects are involved. This 
non-symmetrical feature of ZOLZ patterns could yield 
observable effects in the HRTEM images that cannot be 
interpreted by image simulation with the projection 
approximation. 

Finally, one important issue that should be addressed 
is that for HOLZ calculations the consistency between 
the multislice method (even without tilt) and the Bloch- 
wave method has thus far not been tested, although the 
equivalence between the two methods has been shown 
by the calculations for ZOLZ (e.g. Self et al. ,  1983; Ma 
& Marks, 1990; Spence & Zuo, 1992). It is known that 
the so-called low-order HOLZ reflections (Self & 
O'Keefe, 1992), or the bulk-forbidden surface-allowed 
reflections (Marks, 1992), which appear at the for- 
bidden positions of the ZOLZ plane when the number of 
unit cells in the beam direction is not an integer {e.g. 
Lynch (1971) for Au[l 11]} can easily be included in .the 
MS calculation by using extra top-bottom slices (Chen 
et al. ,  1996). But this type of HOLZ effect seems 
difficult for the Bloch-wave method to take into 
account. On the other hand, for the large-angle HOLZ 
reflections, the Bloch-wave method has been shown to 
be very successful [for reviews, see Spence & Zuo 
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(1992) for the reciprocal-space Bloch-wave method; 
Bird (1989) for the real-space Bloch-wave method]. But 
the MS has not been used much for calculating this type 
of HOLZ effect. The key question is how accurate the 
normal high-energy approximation is on which the MS 
is based. Although it has been pointed out that 
intuitively the parabola surface should be modified to 
the (Ewald) sphere surface, it is shown in our 
forthcoming work based on a rigorous approach that 
the sphere surface in fact is modulated by the crystal 
potential. So, for HOLZ effects, further theoretical 
work needs to be done. 

7. Conclusions 

Three existing MSBT formulations have been intro- 
duced in a unified form and the validity of these 
formulations has been evaluated with respect to the MS 
(without tilt). It is shown that the differences between 
these formulations can be summarized as follows: in 
MSSBT (the MS for small beam tilt), the slice thickness 
is measured along the normal direction of the slice 
plane, in MSLBT (large beam tilt), the slice thickness is 
measured along the incident-beam direction, and, in 
MSMBT (for medium beam tilts), the slice thickness for 
the propagator differs from that for the phase grating. 
The accuracy of each formulation is a function of the tilt 
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Fig. 16. Illustration of the back scattering in the case of inclined 
illumination: (a) in real space; (b) in reciprocal space with the 
Ewald sphere. 

angle. For small tilt angles less than 3 ° , these three 
formulations give exactly the same results. For tilt 
angles as large as 20 °, only the MSLBT results are still 
very close to the MS results. The MSSBT is valid up to 
6 °, while the MSMBT is almost as accurate as the 
MSLBT up to 12 °. 

For calculating the HOLZ effects from triclinic and 
monoclinic (when the incident beam is along the c axis) 
crystals, the slices have to be taken parallel to the ab 
plane of the crystals and the MSLBT should be used. 
For the large-angle resonant HOLZ effects, the MSLBT 
can be used if the 0 angle between the c axis and the 
normal direction of the ab lattice plane of the crystal is 
around 10 ° or less, while for the lower-order HOLZ 
effects the MSLBT may be used until the 0 angle is as 
large as 20 ° . 

For triclinic and monoclinic crystals, the large-angle 
resonant HOLZ effects dynamically influence not only 
the intensity but also the symmetry of ZOLZ diffraction 
patterns and this may yield observable effects in the 
HRTEM images. So, for simulating the HRTEM 
images of triclinic and monoclinic crystals, one may 
not simply use the projection approximation except 
when the c parameter is quite small so that the large- 
angle resonant HOLZ reflections do not occur. 

APPENDIX A 

Following Ishizuka's (1982) derivation, Wang (1995) 
obtained the following MSBT formula in its original 
form: 

q~(b, z )=  [(K/Kz)P '(b,z-z0)]* {exp[ia(K/Kz)V(b)]cb(b,zo) } 

(18) 

with the potential V(b) projected along the normal 
direction of the slice plane and the propagator 

P ' (b,  A, z = z -- Zo) = (1/ i2Az)exp[2rri(K - Kz)Az ] 

x exp[(:rrib2/kAz) - 2:riK b . b]. 

(19) 

In our notation, (18) and (19) should be rewritten as 

q:,.K~(R, ne) =[(k /kz)U(R,  e)] • {exp[icr(k/kz)eW. (R)] 
Ku 

x q:'._l[R, ( n -  1)el} (20) 

with 

P ' (R,  e) = ( 1/i2e) exp[2rri(k - k z)e] exp[(zriR 2 / 2e) 

- 2zriK,, • R], (21) 

w h e r e ,  indicates a convolution product. 
Taking a 2D Fourier transformation over (21), we 

obtain 
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f P ' (R,  e) exp(-2rriK • R)dR  

= exp[2rri(k - kz)e ] exp[-rrike(2K,, • K + K2u)] 

x (1/i).e) f e x p [ ( n i / ) . e ) ( R -  2eK,) 2] 

x exp[2rriK. (R - 2eKu) ] d(R - ).eK,) 

= exp[2ni(k - kz)e ] e x p [ - n i 2 e ( K  + K~)2]. (22) 

So the convolution of the propagator by a wave function 
will be 

(kz /k )P ' (R ,  e) • q~(R) = (kz /k)exp[2ni(k  - kz)e] 

x f{exp[-rri;~e(K +K~)2]~0(K)} 

x exp(2:riK • R) dK. (23) 

On the other hand, we have 

e x p { e [ ( i 2 A / 4 n ) -  ~ . K  u • V -  rri2K2~]}*(R) 
= exp[(i2e/4:rr)(V + 2zriK~)2]~(R) 

{V = ( l /m! ) [ ( i~e /4n) (V  + 2inK,,) ] 

x f ~o(K) exp(2niK • R) dK 

= f {  ~m(1/m!)[(iAe/4zt)( 2ni)2(K + Ku)2] m } 

× ~o(K) exp(2niK • R) dK 

= f{exp[-ni: .e(K+Ku)2]~o(K)} exp(2niK • R) dK. 

(24) 

Comparing (23) with (24), we therefore have 

(kz /k )P ' (R ,  e).g '(R) = (kz/k)exp[2rri(k - kz)e] 

x exp e[ ( i2A/4n)  

- 2 K  u • V -  ni2K2u]~(R). (25) 

Dropping the constant factor (for single-beam illumina- 
tion), (kz/k) exp[2ni(k - kz)e ], the MSBT formula, (20), 
can therefore be rewritten as 

q0K"(R) = exp{e[(i2A/4rr) -- 2K. .  V - ni2K2.]} 
• p Ku x exp[lae,.V~ (R)]q0._l(R). (26) 

We can see that in (26) the 'slice thickness' in the phase 
grating is measured along the incident-beam direction, 
e,, = (k/kz)e, while the slice thickness in the propagator 
is measured along the normal direction of the slice 
plane. 
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